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Abstract— When correlated sources are to be communicated
over a network to more than one sink, joint source-network
coding is in general required for information theoretically optimal
transmission. Whereas on the encoder side simple randomized
schemes based on linear codes suffice, the decoder is required to
perform joint source-network decoding which is computationally
expensive. Focusing on maximum a-posteriori decoders (or con-
ditional mean estimators, in the case of continuous sources), we
show how to exploit (structural) knowledge about the network
topology as well as the source correlations giving rise to an
efficient decoder implementation (in some cases even with linear
dependency on the number of nodes). In particular, we show
how to statistically represent the overall system (including the
messages) by a factor-graph on which the sum-product algorithm
can be run. A proof-of-concept is provided in the form of a
working decoder for the case of three sources and two sinks.

I. I NTRODUCTION

Motivated by the fact that in many important cases the
separation between source and network coding fails [10] and,
in general, joint decoding is required [5], this work aims at
providing a computationally tractable decoding solution for
correlated sources over general networks. In particular, the
presented scheme exploits (structural) knowledge about the
network topology as well as the source correlation within the
system to allow for an efficient implementation of maximum
a-posteriori decoders (or conditional mean estimators, incase
continuous sources are considered).

Starting with the problem of distributed source coding,
Slepian and Wolf characterized in their landmark paper [11]
the (minimal) achievable rates for the case where (two) cor-
related sources are to be encoded independently and com-
municated (over perfect channels) to a single sink. Csiszar
showed in [4] that linear codes are sufficient when either
(non-universal) maximum a-posteriori (MAP) decoders or
even (universal) minimum entropy (ME) decoders are used
at the sink. Subsequent research in this area yielded practical
encoding and decoding solutions (mostly for a small number
of sources), see e.g. [14] and references therein.

Ahlswede et al. considered in [1] the problem of communi-
cating (uncorrelated) sources over a network to more than one
sink and showed that the (maximum) achievable rate supported
by the network (i.e. the maximum throughput) can be achieved
by performing network coding. Koetter and Medard presented
in [6] an algebraic framework for network coding based on
linear codes giving rise to practical implementations.

For scenarios where correlated sources have to be commu-
nicated over a network the achievable rates have been derived
by Song and Yeung in [12]. Ho et al. showed in [5] that linear
codes are sufficient to achieve those rates when either MAP
or ME decoders are used at the sink. Although some attempts
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have been made by Coleman et at. [3] to reduce the complexity
of ME decoders for growing block lengths, the complexity of
both decoder types (MAP and ME) is generally not tractable
for a large number of encoders. Therefore, Ramamoorthy et
al. [10] asked the question on whether the joint source-network
coding (SNC) problem can be separated and showed that this,
in general, is not the case. In summary this means that it is
sufficient to use linear codes at the encoder side but also that
we have to deal with high complexity at the decoder side. First
attempts to provide practical coding solutions for joint SNC
problems can e.g. be found in [13]. Since those approaches
are mostly of sub-optimal nature and only work for a small
number of encoders, we look at the problem from a different
perspective, building on previous work on joint source-channel
coding [2], [9]. The goal is to provide a feasible decoding
solution for joint SNC problems for a possibly large number
of encoders in form of a MAP decoder implementation (or
a conditional mean estimator (CME) implementation, in the
case of continuous sources) that exploits knowledge about
the network topology as well as the source correlations. In
particular this shall be achieved as follows:

• Statistical System Representation:After introducing the
considered problem setup in Section II, we show how to
describe the system statistically in Section III.

• Decoding Model:Using the statistical system representa-
tion, we construct a decoding model that can be used for
an efficient decoder implementation in Section IV.

• Iterative Decoder:In Section V we describe how the
derived decoding model can be used within an iterative
decoding scheme based on the sum-product algorithm
running on factor-graphs and show that, depending on
the properties of the decoding model, the decoding com-
plexity can be made to increase linearly with the number
of nodes.

• Proof-Of-Concept:In Section VI provide a proof-of-
concept in an form of a working decoder implementation,
using the counter example for separation with three
sources and two sinks as presented in [10].

We believe that this scheme is a valid first step towards
practical joint SNC.

II. PROBLEM SETUP

We start by introducing our notation. Random variables are
denoted by capital letters, e.g.X , where its realizations are
denoted by the corresponding lowercase letters, e.g.x. Vectors
are denoted by bold letters and (if not stated differently)
assumed to be column vectors, e.g.x = (x1, x2, . . ., xN )T .
Sets are denoted by capital calligraphic letters, e.g.X , where
|X | denotes the set’s cardinality. We follow the convention,
that variables or variable vectors indexed by a set denote a set
of variables or a set of variable vectors, e.g. ifN = {1, 2, 3}
then xN = {x1, x2, x3} and xN = {x1,x2,x3}. Similarly,
we define the crossproduct, i.e. ifxn ∈ Xn, n = 1, 2, 3, then
xN ∈ XN = X1 ×X2 ×X3.
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Fig. 1. Exemplary scenario with three sources and two sinks where separation
does not hold as presented in [10].

A. Network Topology and Source-Terminal Configuration

We consider a network represented by the directed graph
G = {V , E} whereV = {vn : n ∈ N} is the set ofvertices
(or nodes)vn uniquely identified by the indicesn ∈ N
and E is the set of directededgesek,l = (vk, vl) where
k ∈ N identifies the parent vertexvk and l ∈ N , l 6= k,
identifies the child vertexvl. We assume that the transmission
ratesRk,l at all edgesek,l ∈ E are either known beforehand
or chosen adequately, e.g. by constructing the minimum-cost
subgraphs [8] with respect to some cost function of interest.

Each vertexvs within the network may or may not have
access to the output of a (vector) sourceis, s ∈ S, where
the setS ⊆ N identifies the sources within the network.
Furthermore, each vertexvn, n ∈ N , within the network may
or may not be a sink, i.e. a node who wants to recover a
subset of sources. The set of sink nodes is identified by the
set T ⊆ N . In particular, we denote the subset of sources
to be recovered at sinkvt, t ∈ T , by the setSt ⊆ S. The
recovered (vector) sources shall be denoted asîs.

Figure 1 shows a simple example network withS =
{1, 2, 3}, T = {6, 7} and S6 = S7 = {1, 2, 3} illustrating the
used notation.

B. Source Model and Factorization

The output at each sources ∈ S is considered to be a
vector of B discrete-valued source symbols such thatis =
(is,1, is,2, . . ., is,B) where the vector elementsis,b are drawn
i.i.d. according to some probability mass function (PMF)
such thatp(is,b) = p(is) for b = 1, 2, . . ., B, i.e. p(is) =
∏B

b=1 p(is,b). The joint output of all sourcesS is given by
the vector (of output vectors)iS = (is1

, is2
, . . ., is|S|

). Due
to the i.i.d. nature of the source outputsis, s ∈ S, the
probability of the joint outputp(iS) can be expressed by the
product p(iS) =

∏B
b=1 p(iS,b). As discussed later, it shall

turn out useful if also the joint probabilityp(iS) can be
furthermore expressed (or approximated) by a product with
factors p(iA|iB), A ⊆ S,B ⊆ S. See Figure 1 for a brief
example wherep(i1, i2, i3) factors intop(i1) · p(i2, i3) since,
as assumed in [10],i1 is independent ofi2 and i3.

C. Problem Statement

Under the system setup described above, the goal of this work
is to show how to design an approximate MAP decoder (or
a CME, in the case of continuous sources) that is capable of
exploiting the network topology and the source factorization
for an efficient implementation.1 Focusing on the case of small

1In cases where the factorization ofp(iS) is not approximated and
(additionally) thedecoding model, as introduced later in this work, can be
represented by an acyclic factor-graph, the decoder will beoptimal. Otherwise,
we obtain a reasonably good approximation.

block lengths2 but a possibly large number of sources, we want
to show that, depending on the degree of the SNC nodes and
the properties of the source model, it is possible to design
(optimal) decoders, whose complexity grows linearly with the
number of considered sources, giving rise to practical joint
source-network coding solutions.

III. STATISTICAL SYSTEM MODEL

The decoding concept presented in this work relies on a
statistical representation of the system components (i.e.the
source model, the nodes and the edges).

Considering the source model first, the statistical source
representation directly follows from the problem statement
presented before. The (vector) outputis ∈ Is of the sources
s ∈ S is considered to be a realization of the random variable
(vector) Is and the source statistics are represented by the
joint probability p(iS) which, as discussed before, might be
expressed by a product with factorsp(iA|iB), A ⊆ S,B ⊆ S.

For the decoder implementation we will use a graphical
model representing the statistical dependencies within the
network. Those graphical models consist of a set ofvariable
nodes, representing the random variable within the system, that
are connected viafunction nodes, representing the statistical
dependencies between the connected random variable nodes.
In Figure 2 e.g. the variable node representing the (vector)
output ia, a ∈ S, is depicted together with the function
nodepA|B representing the conditional probabilityp(iA|iB),
A ⊆ S, B ⊆ S.

We assume that the nodes within the network generally
have full SNC coding capabilities. Each nodevn, n ∈ N ,
might have a source input (i.e. ifn ∈ S) and additional
inputs from nodesl ∈ L, l 6= n and outputs to other nodes
k ∈ K,k 6= n. The source inputin ∈ In is assumed to
be a realization of the random variableIn. Similarly, the
inputs yl ∈ Yl from the nodesl ∈ L is assumed to be a
realization of the random variableYl and the outputsxk ∈ Xk

from the nodesk ∈ K is assumed to be a realization of the
random variableXk. Following this definition of the node
inputs and outputs, in general, the encoding functionϕn,k

at nodevn with output vk is given by the (deterministic)
mappingϕn,k : In × YL → Xk. Clearly, this mapping
can also be described in a probabilistic fashion by employing
the transition probabilitiesp(xk|in,yL) which are set equal to
1 or 0 depending if a certain inputin andyL is mapped onto
the outputxk, or not, respectively.3

In Figure 2 the statistical model of the SNC nodes is
depicted graphically using variable and function nodes.

In contrast to the most simplistic case, where the edges
ek,l deliver the outputxl of node vk perfectly as inputyk

to node vl, we allow that the edges represent a discrete
memoryless channel(Xl, p(yk|xl),Yk) with input alphabet
Xl, output alphabetYk and transition probabilitiesp(yk|xl).

In the graphical representation the edgesek,l with transition
probabilitiesp(yk|xl) are represented by the function nodes
fl|k, as shown e.g. in Figure 2. Using the statistical models of

2It worth pointing out that this restriction in some cases might not lead
to direct drawbacks. Considering e.g. the important case of(random) linear
network coding where coding is performed with symbols over the field F28

(i.e. 8 bits) the block lengths are short. Similarly, there exist distributed
source coding schemes, e.g. those that rely on sending syndromes, that work
with good performance for small block lengths. Furthermore, in contrast to
universal decoders that require long block lengths, we fully use the source
statistics within the design to compensate for the drawbacks raised by the
small block length assumption.

3Notice that this encoder formulation with given input and output alphabets
directly allows for the description of (linear) blockcodeswithin the system
which are sufficient for our purposes.
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Fig. 2. Statistical model of the system components represented graphically via interconnected variable and function nodes.

the network components (i.e. the source model, the network
nodes and the edges) it is possible to construct (by simple
replacement) a model representing statistically the overall
system (including the paths traversed by the packets).

IV. D ECODING MODEL

The statistical system model, as derived before, can not yetbe
used (at least directly) for decoding purposes. In the following
we show how to construct a statistical decoding model that
later can be used for an efficient decoder implementation.
We assume that decoder at the considered sink node has (a)
access to the received packets, (b) a-priori knowledge about
the source statistics and (c) a-priori (or transmitted, e.g. in
the packet header4) knowledge about which network nodes
and edges were traversed by the received packets as well as
the traversed nodes’ coding functions and the traversed edges’
transition probabilities or, equally sufficient, knowledge about
the global transition probabilities between the source outputs
and the received messages at the sink node.

A. Statistical Message Representation

For now we assume full knowledge about the traversed nodes
and edges and the performed coding operations and transition
probabilities. Using this knowledge, we are able to construct
for each nodevt, t ∈ T , and for each received packet a
statistical model of the packet path within the network.5 For
referencing purposes, we introduce the running indexmt =
1, 2, . . ., Mt, uniquely identifying the incoming packets at node
vt, and denote the traversed nodes (in the corresponding
configuration) byv

(mt)
n and the traversed edges bye(mt)

k,l .

Using the set of all such nodesV(mt)
t and the set of all

such edgesE(mt)
t , we are able to construct a graphG(mt)

t =

{V
(mt)
t , E

(mt)
t }, representing the path of packetmt within the

network. Using the same models as described before, the graph
components ofG(mt)

t can then be represented statistically and
we obtain thepacket modelfor packetmt.

Considering the graphical representation via variable and
function nodes, we shall use the same notation with superscript
(mt) to indicate that the corresponding node belongs to packet
mt, e.g.f (mt)

l|k or y
(mt)
l .

In many practical cases not all of the variables within the
model might be relevant for the task at hand. Therefore,
usually, the statistical model can be simplified considerably.
Considering e.g. the graphical model the concatenation of sev-
eral function nodes (together with the interconnecting variable
nodes) might be replaced by a single, equivalent, function

4Sending this side information in the packet header clearly creates some
overhead which needs to be discussed separately. For brevity we neglect this
discussion here and assume that the decoder uses its a-priori knowledge about
the network.

5It is important to point out that, in general, some nodesvn and some
edgesek,l might be traversed by a certain packetmt not at all, once, or
several times. Furthermore, the coding function at each node might vary for
each packetmt, e.g. depending on how many inputs where available at the
coding instant.

node. We shall refer to the original packet model as the
full model and to the simplified packet model assimplified
model. The function nodes in the simplified model shall be
distinguished, in terms of notation, by the usage of a tilde
and updated subscripts, e.g.f̃

(mt)
L|K , K ⊆ N , L ⊆ N , and the

variable nodes by updated subscripts, e.g.y
(mt)
L . In Figure 3

the full and simplified packet model for sink nodev6 and
received packetsm6 = 1, 2, 3 are shown for the example
scenario presented before.

B. Constructing the Decoding Model

Considering the decoder at sink nodevt, t ∈ T , we are
able to combine the packet models represented by the graphs
G

(mt)
t , mt = 1, 2, . . ., Mt, as well as the source modelp(iS)

in order to obtain an overall model, describing the statistical
dependencies within the system that are required for decoding.
We shall refer to this model as thedecoding modelGt. In
particular, we combine the packet models and the source
model via the source nodesv(mt)

s for all s ∈ St by setting
i
(mt)
s = is for mt = 1, 2, . . ., Mt and add the source statistics
p(iS) to the resulting model.6

How the packet models and the source model are combined
to jointly form the decoding model is illustrated graphically
in Figure 3 for the exemplary scenario presented before (and
simplified packet models).

V. I TERATIVE DECODING

The results so far present us with a model representing
the statistical dependencies within the network that can be
exploited for an efficient decoder implementation, as presented
in the following.

A. Maximum a-Posteriori (MAP) Decoding (and Conditional
Mean Estimation (CME))

Considering the decoder at sink nodevt, t ∈ T , we are
interested in recovering the source output (vector)is of all
sourcess ∈ St. The decoder jointly uses the inputsy(mt) of
all received packetsmt = 1, 2, . . ., Mt

7 as well as the a-priori
knowledge about the source statisticsp(iS) in order to produce
the estimatêis of all sourcess ∈ St. Considering MAP
decoding (which is optimal in case where the error probability
has to be minimized), the decoder selects the estimatesis for
all s ∈ St as follows

îs = argmax
i∈Is

p(is = i|y(1),y(2), . . .,y(Mt)). (1)

The core of the problem is to derive the actual values for the
conditional probabilities in (1). Using a similar approachas

6It is worth pointing out that connecting the models in this fashion is
allowed since the source outputiS (with joint statisticsp(iS)) was initially
used to generate all packets emitted at source nodevs, i.e. i(mt)

s at v
(mt)
s

was the same formt = 1, 2, . . ., Mt.
7Since the packet indexmt can be used to uniquely identify the packet

y
(mt)
L , no matter from which set of nodesL they were sent, the subscript

shall be dropped in the following.
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e.g. in [2], [9] it can be shown that the conditional probability
can be derived via the marginalization

p(is= i|y(1),y(2),. . .,y(Mt))=
1

γ

∑

iS∈IS :is=i

p(iS ,y(1),y(2),. . .,y(Mt)),

(2)
whereγ = 1/p(y(1),y(2), . . .,y(Mt)) can be seen as normal-
ization constant and

p(iS ,y(1),y(2), . . .,y(Mt)) = p(iS) · p(y(1),y(2), . . .,y(Mt)|iS).
(3)

(Considering the case of CME, the decoding operation re-
duces, similar as before, to the problem of calculating the
conditional probabilities according to (2), which is not dis-
cussed separately here.)

It is worth pointing out that it might be possible (depending
on the source and decoding models) to express the factors
in (3) themselves by a product which can be exploited for
an efficient implementation of the marginalization in (2), as
outlined in the next section.

B. Factor-Graphs and the Sum-Product Algorithm

It is easy to see that the decoding model derived before
describes a (valid) factorization of the factors in (3) and its
graphical representation is often called afactor-graph, see
e.g. [7]. Employing thesum-product algorithm, also see [7],
which runs on the factor-graph, the (global) marginalization
in (2) can be performed via (local) marginalizations and giving
rise to an efficient calculation. In particular this is achieved
by running an appropriatemessage passingalgorithm8 along
the factor-graph and, depending on whether the message
passing procedure terminates or not (i.e. if the factor-graph
is cycle-free or not), the exact or an approximated value of
p(is = i|y(1),y(2), . . .,y(Mt)) is obtained simultaneously for
all i ∈ Is and alls ∈ St.

C. Complexity Considerations

For the following discussion of the sum-product algorithm’s
decoding complexity, we consider (for the sake of simplicity)
the case whereSt = S = N for all t ∈ T . We setN = |N |
and define the following parameters concerning the graphical
decoding model (not simplified): Themaximum alphabet size
S = maxn∈N {max{|In|, |Xn|, |Yn|}}, the number of func-
tion nodesNf , thenumber of variable nodesNv, themaximum
degree of function nodesdf , i.e. the maximum number of

8For factor-graphs without cycles the efficientforward-backwardalgorithm
can be employed, see [7].

variable nodes directly connected to any function node, and,
similarly, themaximum degree of variable nodesdv.

If we assume that the complexity of elementary opera-
tions (additions, multiplications, look-ups, etc.) is of constant
complexityO(1), then the complexity of calculating a single
message at any function node is ofO(Sdf ) and the complexity
of calculating a single message at any variable node is of
O(dvS), similar as e.g. derived in [2], [9]. Considering the
case where the factor-graph is cycle-free, an adapted version of
the efficient forward-backward algorithm [7] can be employed,
and it can be shown that the complexity of calculating all
messages at the function nodes is ofO(NfdfSdf ), that the
complexity of calculating all messages at the variable nodes
is of O(Nvd2

vS) and that the overall complexity is given by
their sum. For the case where the factor-graph has cycles,
an iterative approach is required, and the complexities derive
to be of O(TNfdfSdf ) and O(TNvd

2
vS) for the function

and variable nodes, respectively, whereT ≫ 1 denotes the
maximum number of iterations performed.

We observe the following: (a) Source and packet models
that can be represented by trees lead to a maximum number
of function nodesNf that is ofO(N), (b) df depends on the
connectivity of the nodes within the packet models (i.e. the
number of packets that are jointly encoded) and the properties
of the given (chosen) the source model, (c)Nv depends on
the number of network nodesvn and their degree, and (d)
dv depends on the topology of the given (chosen) source
model. We conclude that the decoding complexity, which is
clearly governed by the function nodes, is strongly affected
by the topology of the packet and source model (exponential
dependency on node degree) andnot by the number of nodes
(only linear dependency onN ). This in turn means that the
decoding model used for the decoder implementation (which
might be simplified, or not) should aim for a large number
of function nodes with a small degree rather than a small
number with a large degree, i.e. we always should exploit the
structural properties of the (full) decoding model to obtain a
decoder with low complexity.

VI. PROOF-OF-CONCEPT

Considering the counter example with three sources and two
sinks presented in [10], we focus on the system setup depicted
in Figure 1. To provide some first results, we consider the case
of block lengthB = 1, i.e. where each each source symbol
is encoded and transmitted separately. In our source model
the (discrete-valued) source symbolsIs are the quantized



versions of a continuous-valued source samplesUs, s =
1, 2, 3, where the vector(U1, U2, U3) is distributed according
to a multivariate Gaussian distribution. To emulate the scenario
in [10], whereI2 andI3 are correlated andI1 is independent of
them, the joint distribution of(U1, U2, U3) is chosen such that
p(u1, u2, u3) factors intop(u1)· (u2, u3) whereU1 ∼ N (1, 0)
and (U2, U3) ∼ N (Σ, µ) with Σ =

[ 1 ρ
ρ 1

]

, µ = (0, 0)T

and correlation coefficientρ. We are able to express this
correlation model of the sourcesI1, I2 and I3 in terms of
(conditional) entropies such thatH(I1) = H(I2) = H(I3) =
h, H(I2|I3) = H(I3|I2) = ǫ andH(I2, I3) = h + ǫ whereh
(under afore mentioned assumptions) depends of the chosen
quantizer andǫ (additionally) on the correlation coefficientρ.

After introducing the constantsRh, Rǫ, Rh+ǫ and using the
results in [12], it can be easily verified that the ratesR1,6 =
R1,4 =R2,4 =R3,7 =R5,6 =Rh≥h, R3,6 =Rǫ≥ ǫ andR4,5 =
R5,7 =Rh+ǫ≥h+ ǫ are admissible. Following this results, we
chooseRh =⌈h⌉, Rǫ =⌈ǫ⌉+ δ andRh+ǫ =⌈h+ ǫ⌉+ δ, where
δ corresponds to some additional rate we might be willing to
utilize to improve the decoding results.

Considering the system setup in Figure 1, we choose the
encoding functions at nodev1, v2 andv3 as bijective mappings
in case the output rate isRh and as a surjective mapping in
case the output rate isRǫ. For nodev4 the coding function
from the two inputs to the output corresponds to a mapping
representing the modulo-2Rh addition of the input symbols
which is then modified to obtain a output rateRh+ǫ.9 Node
v5 simply corresponds to a bijective mapping from the input
to each output.

For our numerical results, we choose a 8 level Lloyd-
Max quantizer leading toh = 2.83 [bit] and chooseǫ =
0 · h, 1

3 · h, 2
3 · h, h corresponding toρ = 1, 0.988, 0.881, 0

(derived by experiment). We used106 samples for each
source and each simulation. We quantify the performance of
decodert decoding the discrete-valued sourceIs to form the
reconstruction valuêIs,t in terms of the error probabilityPs,t

and, similarly, we consider the output signal-to-noise ratio
SNRs,t = −10 log10 E{(Us − Ûs,t)

2} in [dB] to evaluate
the performance in the case of continuous-valued sources,
s = 1, 2, 3, t = 6, 7.

Numerical results for the presented setup and several values
of δ are summarized in Table I. In Case (a) whereU2 andU3

are fully correlated (i.e.u2 = u3) and Case (d) whereU2 and
U3 are statistically independent, we obtain optimal results with
a error probabilityPs,t = 0 and an output SNRs,t = 14.6 [dB]
(distortion of Lloyd-Max quantization alone). The optimality
of the results is expected, since in each of those cases the
system degrades and can be represented by an equivalent
system that does not require source correlations for decoding.
For Case (b) and (c) we need the correlations for decoding.
We observe that already forδ = 0 we obtain reasonably good
performance by our joint source-network decoding approach.
Furthermore, considering Case (b1), (b2), (c1) and (c2), we
observe that if we are willing to increase the transmission
rate by a small amountδ > 0 then the overall performance
improves rapidly, which underlines the capabilities of the
decoder to effectively exploit additional redundancy (in the
received packets) to improve the overall decoding result.

9At this point we neglect a detailed description on howgood mappings
can be constructed (or selected) since the decoder works forall mappings
meeting the above requirements. For our experiments we choose deterministic
mappings preserving the low-resolution information of thesources but our
experiments indicate (as expected) that random mappings usually yield good
results, especially whenB > 1.

TABLE I

ǫ [bit] (ρ) 0 (1) 1
3
h = 0.942 (0.988)

δ [bit] 0 0 0.585 1
Rh [bit] 3 3 3 3
Rǫ [bit] 0 1 1.59 2
Rh+ǫ [bit] 3 4 4.59 5
P1,6 =P2,6 [bit] 0 0 0 0
P3,6 [bit] 0 82.6e-3 43e-6 18e-6
P1,7 =P2,7 [bit] 0 65.8e-3 43e-6 11e-6
P3,7 [bit] 0 0 0 0
SNR1,6 [dB] 14.6 14.6 14.6 14.6
SNR2,6 [dB] 14.6 14.6 14.6 14.6
SNR3,6 [dB] 14.6 12.6 14.6 14.6
SNR1,7 [dB] 14.6 8.29 14.6 14.6
SNR2,7 [dB] 14.6 12.8 14.6 14.6
SNR3,7 [dB] 14.6 14.6 14.6 14.6
Case (a) (b) (b1) (b2)

ǫ [bit] (ρ) 2
3
h = 1.88 (0.881) h = 2.83 (0)

δ [bit] 0 0.322 0.585 0
Rh [bit] 3 3 3 3
Rǫ [bit] 2 2.32 2.59 3
Rh+ǫ [bit] 5 5.32 5.59 6
P1,6 =P2,6 [bit] 0 0 0 0
P3,6 [bit] 28.2e-3 5.20e-3 430e-6 0
P1,7 =P2,7 [bit] 23.7e-3 4.50e-3 468e-6 0
P3,7 [bit] 0 0 0 0
SNR1,6 [dB] 14.6 14.6 14.6 14.6
SNR2,6 [dB] 14.6 14.6 14.6 14.6
SNR3,6 [dB] 9.40 12.3 14.2 14.6
SNR1,7 [dB] 9.17 13.0 14.5 14.6
SNR2,7 [dB] 9.87 12.5 14.2 14.6
SNR3,7 [dB] 14.6 14.6 14.6 14.6
Case (c) (c1) (c2) (d)
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