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Abstract— When correlated sources are to be communicated
over a network to more than one sink, joint source-network
coding is in general required for information theoretically optimal
transmission. Whereas on the encoder side simple randomide
schemes based on linear codes suffice, the decoder is reqdite
perform joint source-network decoding which is computatiaally
expensive. Focusing on maximum a-posteriori decoders (oon-
ditional mean estimators, in the case of continuous sourcgswe
show how to exploit (structural) knowledge about the netwok
topology as well as the source correlations giving rise to an
efficient decoder implementation (in some cases even witmbar
dependency on the number of nodes). In particular, we show
how to statistically represent the overall system (includig the
messages) by a factor-graph on which the sum-product algahim
can be run. A proof-of-concept is provided in the form of a
working decoder for the case of three sources and two sinks.

I. INTRODUCTION

Motivated by the fact that in many important cases thoef
separation between source and network coding fails [10] and

at

in general, joint decoding is required [5], this work aims

providing a computationally tractable decoding solutiam f

correlated sources over general networks. In particukee,
presented scheme exploits (structural) knowledge abaait

network topology as well as the source correlation withia th
system to allow for an efficient implementation of maximum

a-posteriori decoders (or conditional mean estimatorsase
continuous sources are considered).
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have been made by Coleman et at. [3] to reduce the complexity

of ME decoders for growing block lengths, the complexity of

both decoder types (MAP and ME) is generally not tractable
for a large number of encoders. Therefore, Ramamoorthy et
al. [10] asked the question on whether the joint source-oktw
coding (SNC) problem can be separated and showed that this,
in general, is not the case. In summary this means that it is
sufficient to use linear codes at the encoder side but algo tha
we have to deal with high complexity at the decoder sidet Firs
attempts to provide practical coding solutions for jointGN
problems can e.g. be found in [13]. Since those approaches
are mostly of sub-optimal nature and only work for a small
number of encoders, we look at the problem from a different
perspective, building on previous work on joint sourceroiel
coding [2], [9]. The goal is to provide a feasible decoding
solution for joint SNC problems for a possibly large number
encoders in form of a MAP decoder implementation (or
conditional mean estimator (CME) implementation, in the
case of continuous sources) that exploits knowledge about
the network topology as well as the source correlations. In

R}articular this shall be achieved as follows:

« Statistical System Representatiokfter introducing the
considered problem setup in Section I, we show how to
describe the system statistically in Section III.

« Decoding ModelUsing the statistical system representa-
tion, we construct a decoding model that can be used for

Starting with the problem of distributed source coding,
Slepian and Wolf characterized in their landmark paper [11]
the (minimal) achievable rates for the case where (two) cor-*
related sources are to be encoded independently and com-
municated (over perfect channels) to a single sink. Csiszar
showed in [4] that linear codes are sufficient when either
(non-universal) maximum a-posteriori (MAP) decoders or
even (universal) minimum entropy (ME) decoders are used
at the sink. Subsequent research in this area yielded pahcti
encoding and decoding solutions (mostly for a small number®
of sources), see e.g. [14] and references therein.

Ahlswede et al. considered in [1] the problem of communi-
cating (uncorrelated) sources over a network to more than on

an efficient decoder implementation in Section V.
Iterative Decoder:In Section V we describe how the
derived decoding model can be used within an iterative
decoding scheme based on the sum-product algorithm
running on factor-graphs and show that, depending on
the properties of the decoding model, the decoding com-
plexity can be made to increase linearly with the number
of nodes.

Proof-Of-Concept:In Section VI provide a proof-of-
concept in an form of a working decoder implementation,
using the counter example for separation with three
sources and two sinks as presented in [10].

sink and showed that the (maximum) achievable rate support¥e believe that this scheme is a valid first step towards
by the network (i.e. the maximum throughput) can be achievBactical joint SNC.

by performing network coding. Koetter and Medard presented
in [6] an algebraic framework for network coding based o\,
linear codes giving rise to practical implementations.

For scenarios where correlated sources have to be comiy
nicated over a network the achievable rates have been deri
by Song and Yeung in [12]. Ho et al. showed in [5] that line
codes are sufficient to achieve those rates when either M
or ME decoders are used at the sink. Although some attem
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II. PROBLEM SETUP

e start by introducing our notation. Random variables are
denoted by capital letters, e.&X, where its realizations are
Yhoted by the corresponding lowercase letters,ze Yectors

denoted by bold letters and (if not stated differently)

I%sumed to be column vectors, exg= (21, 72,...,2x5)7.
ets are denoted by capital calligraphic letters, &gwhere
e{ﬁ denotes the set's cardinality. We follow the convention,

This work was supported in part by the Fundag¢ao para ai&iec
Tecnologia (Portuguese Foundation for Science and Tesyplnder grant
SFRH/BD/29918/2006 and in part by the European CommissimteuGrant
FP7-INFSO-ICT-215252 (N-Crave Project). Part of this wawks done while
the first author was a visiting student at the Laboratory fdorimation and
Decision Systems at the Massachusetts Institute of Teagypol

that variables or variable vectors indexed by a set denott a s
of variables or a set of variable vectors, e.gMf= {1, 2, 3}
thenazy = {x1, 292,23} andxy = {x1,x2,x3}. Similarly,
we define the crossproduct, i.e.qif, € X,,, n = 1,2, 3, then
TN € Xy = A X Xy X As.



block length$ but a possibly large number of sources, we want
to show that, depending on the degree of the SNC nodes and
the properties of the source model, it is possible to design
(optimal) decoders, whose complexity grows linearly witk t
number of considered sources, giving rise to practicaltjoin
source-network coding solutions.

Ill. STATISTICAL SYSTEM MODEL

The decoding concept presented in this work relies on a
statistical representation of the system components thie.
source model, the nodes and the edges).

ir, iy, i3 i1 1 Considering the source model first, the statistical source
Fig. 1. Exemplary scenario with three sources and two sirierevseparation f€presentation directly follows from the problem statetmen
does not hold as presented in [10]. presented before. The (vector) outdute Z, of the sources

s € S is considered to be a realization of the random variable

A. Network Topology and Source-Terminal Configuration (vector) I, and the source statistics are represented by the
We consider a network represented by the directed graf@i't Probability p(is) which, as discussed before, might be
G = {V,€) whereV = {v, : n € N} is the set ofvertices ©XPressed by a product with factgrfialis), A€ S,BC S.

(or nodes)wv, uniquely identified by the indices € N For the decoder implementation we will use a graphical
and € is the set of directecedgese,; = (ug,v;) where model representing the statistical dependencies witha th

k € N identifies the parent vertex, andl € N, [ # k network. Those graphical models consist of a setafable

identifies the child vertex;,. We assume that the transmissiofiodesrepresenting the random variable within the system, that
rates Ry, at all edgese;,; € & are either known beforehand®"€ connected vidunction nodesrepresenting the statistical

or chosen adequately, e.g. by constructing the minimum_cggpendencies between the connected random variable nodes.

subgraphs [8] with respect to some cost function of interest” F|gu-re 2eg. thg varlaple node representing the (vgctor)
Each vertexv, within the network may or may not havePUtPutla, a € S, IS depicted tpgether with _the function

access to the output of a (vector) souice s € S, where nodep 45 representing the conditional probabilipfilis),

the setS C N identifies the sources within the network.A cS, BCs. .

Furthermore, each vertax,, n € A/, within the network may We assume that the nodes within the network generally

or may not be a sink, i.e. a node who wants to recoverhé‘vﬁ ﬂrJ]" SNC coding _capab|!|t|es_v.ﬁ Each nodg, %de_.N, I

subset of sources. The set of sink nodes is identified by kg t fave a source input (i.e. € S) an ah ltiona

set7 C N. In particular, we denote the subset of sourcddputs from nodes € £, I # n and outputs to other nodes

to be recovered at sink;, t € 7, by the setS; € S. The Ig € Kk l?’é s Th? f]ourcedinpuﬁn ebfn is_as_lsulmedhto
recovered (vector) sources shall be denoteil as e a realization of the random variablg. Similarly, the

Figure 1 shows a simple example network wigh — inpu_ts Yi € Y, from the n0<_jesl € L is assumed to be a
(1,2,3), T = {6,7} and Ss = S = {1,2, 3} illustrating the realization of the randqm variab¥; and the outp.utx;_c € Xy
from the nodes: € K is assumed to be a realization of the
random variableXy. Following this definition of the node
B. Source Model and Factorization inputs and outputs, in general, the encoding functio

The output at each source € S is considered to be aat nodewv, with outputv; is given by the (deterministic)
vector of B discrete-valued source symbols such that=" Mapping@nk : Zn x Ve — &. Clearly, this mapping.
(is1,is2....,is.3) Where the vector elements, are drawn Can also be described in a probabilistic fashion by emptpyin
ii.d. according to some probability mass function (PMFe transition probabilities(xy|in, y ) which are set equal to
such thatp(is;) = p(is) for b = 1,2,...,B, i.e. p(i;) = 10r0 depending if a certain inpuf, andy, is mapped onto
T2, p(iss). The joint output of all sources is given by the outputx, or not, respectively. _
the vector (of output vectorsls = (is,, is,, ..., s 5, ). DUE In Figure 2 the statistical model of the SNC nodes is
to the iid. nature of the source outpuis s € S, the depicted graphically using variable and function nodes.
probability of the joint outpup(is) can be expressed by the [N contrast to the most simplistic case, wherg the edges
product p(is) = Hlep(is,b). As discussed later, it shall €.l deliver the outputx; of nodew, perfectly as inputy 1
turn out useful if also the joint probability(is) can be © nodew, we allow that the edges represent a discrete
furthermore expressed (or approximated) by a product wiiémoryless channel;, p(y|x:), Yi) with input alphabet
factors p(iulis), A C S,B C S. See Figure 1 for a brief <> Output alphabed’, and transition probabilities(y.[x;).
example where(i, i, i3) factors intop(iy) - p(is, i) since, In the graphical representation the edggs with transition

as assumed in [10}; is independent of, andis. probabilitiesp(yx|x;) are represented by the function nodes
fix» as shown e.g. in Figure 2. Using the statistical models of

used notation.

C. Problem Statement

: : fIt worth pointing out that this restriction in some cases mmigot lead
Under the system setup described above, the goal of this WS Rirect drawbacks. Considering e.g. the important casgasfdom) linear

is to show how to design an approximate MAP decoder (Q&work coding where coding is performed with symbols over field Fos
a CME, in the case of continuous sources) that is capable(igf. 8 bits) the block lengths are short. Similarly, thesdse distributed

i ... source coding schemes, e.g. those that rely on sending®syedr that work
explomng the network t0p0|09y and the source factoraali with good performance for small block lengths. Furthermamnecontrast to

for an efficient implementatiohFocusing on the case of smalluniversal decoders that require long block lengths, wey fulle the source
statistics within the design to compensate for the drawbaelsed by the
lin cases where the factorization gf(is) is not approximated and small block length assumption.
(additionally) thedecoding modelas introduced later in this work, can be 3Notice that this encoder formulation with given input andpau alphabets
represented by an acyclic factor-graph, the decoder witigienal. Otherwise, directly allows for the description of (linear) blockcodesthin the system
we obtain a reasonably good approximation. which are sufficient for our purposes.
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Fig. 2. Statistical model of the system components reptedegraphically via interconnected variable and functiodes.
the network components (i.e. the source model, the netwar&de. We shall refer to the original packet model as the

nodes and the edges) it is possible to construct (by simflél model and to the simplified packet model simplified
replacement) a model representing statistically the dlverenodel. The function nodes in the simplified model shall be

system (including the paths traversed by the packets). distinguished, in terms of notation, by the usage of a tilde
IV. DECODING MODEL and updated subscripts, e@"’}g), K CN, LCN, and the

variable nodes by updated subscripts, @tﬁ.“). In Figure 3
the full and simplified packet model for sink nodg and
[,ﬁceived packetsng = 1,2,3 are shown for the example

The statistical system model, as derived before, can ndiget
used (at least directly) for decoding purposes. In the falg
we show how to construct a statistical decoding model th :
later can be used for an efficient decoder implementatio%:.ena”o presented before.

We assume that decoder at the considered sink node hasgalConstructing the Decoding Model

access to the received packets, (b) a-priori kn°W|edgetab?}bnsidering the decoder at sink node ¢ ¢ 7, we are

the source statistics and (c) a-priori (or transmitted, @9 e 1o combine the packet models represented by the graphs
the packet head®r knowledge about which network nodes,(m:) my = 1,2 M,, as well as the source modglis)

and edges were traversgd by th? received packets as wel n%lgrcier to obtain an overall model, describing the statdti
the trg_versed ”00_"??' coding functlons_ a_nd the traverseds;dgdependencies within the system that are required for degodi
transition probap!lltles or, quz_ally sufficient, knowlexgbout We shall refer to this model as th#ecoding modelj;. In

the global trgnsmon probabilities between the sourcepoist particular, we combine the packet models and the source
and the received messages at the sink node. model via the source nodes™ for all s € S, by setting

s(me)

A. Statistical Message Representation is V=i, formy; =1,2,..., M, and add the source statistics

For now we assume full knowledge about the traversed nod¥és) to the resulting modél. _
and edges and the performed coding operations and transitioHOW the packet models and the source model are combined
probabilities. Using this knowledge, we are able to comstruf© jointly form the decoding model is illustrated graphlyal

for each nodew;, ¢ € 7, and for each received packet 4n Figure 3 for the exemplary scenario presented before (and
statistical model of the packet path within the netwdrkor Simplified packet models).

referencing purposes, we ir_1troduc_e the _running indgx= V. |TERATIVE DECODING

1,2,..., My, uniquely identifying the incoming packets at nodel_

vi, and denote the traversed nodes (in the corresr:)ondmg statistical dependencies within the network that can be

i i (m¢)
cor.1f|gurat|on) byvn™* and the trzave;rsed edges m((? exploited for an efficient decoder implementation, as presk
Using the set of all such nodeg,™*’ and the set of all jj the following.

such edgesﬁt(m"), we are able to construct a graﬁlflm‘) = ] o _ N

{Vt(mt),gt(mt)}’ representing the path of packet within the A. MaX|m_um a—Postenon (MAP) Decoding (and Conditional

network. Using the same models as described before, thé gr%ean Estimation (CME))

components of;"™" can then be represented statistically angonsidering the decoder at sink nodg ¢t € 7, we are

we obtain thepacket modefor packetim. interested in recovering the source output (vecigrpf all
Considering the graphical representation via variable af@urcess € S;. The decoder jointly uses the input§™) of

function nodes, we shall use the same notation with supiptsc@ll received packetsy, = 1,2,..., M, as well as the a-priori

(my) to indicate that the corresponding node belongs to packg@owledge about the source statisticés) in order to produce

me, e_g_fl(‘zn) or yl(mt)_ the estimatei, of all sourcess € &;. Considering MAP

In many practical cases not all of the variables within th@ecoding (which is optimal in case where the error probghbili
model might be relevant for the task at hand. ThereforB@S to be minimized), the decoder selects the estiniatfes
usually, the statistical model can be simplified considgrab@ll s € St as follows
Considering e.g. the graphical model the concatenatio\of s i, = argmax p(i, =iy, y®, ...,y 1)
eral function nodes (together with the interconnectingalde i€z,
nodes) might be replaced by a single, equivalent, functiqhe core of the problem is to derive the actual values for the
conditional probabilities in (1). Using a similar approaas

he results so far present us with a model representing

4Sending this side information in the packet header cleayates some
overhead which needs to be discussed separately. Foryvesineglect this
discussion here and assume that the decoder uses its iekpoadedge about
the network. | i

51t is important to point out that, in general, some nodgsand some Used to generate all packets emitted at source ngdee. is
edgese;. ; might be traversed by a certain packet; not at all, once, or Was the same fom; = 1,2,..., M.
several times. Furthermore, the coding function at eacte moight vary for ~ ’Since the packet index»; can be used to uniquely identify the packet
each packein,, e.g. depending on how many inputs where available at tr!eg”‘), no matter from which set of nodes they were sent, the subscript
coding instant. shall be dropped in the following.

81t is worth pointing out that connecting the models in thishan is

allowed since the source outpig (with joint statisticsp(is)) was initially

my) (m¢)
at vg
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Fig. 3. (a) Using the received packetss = 1, 2, 3 at sink nodevs, the full and the simplified packet modeﬂémﬁ) can be constructed. (b) The (simplified)

decoding models is then obtained by connecting the (simplified) message hs@éé”“), me = 1, 2,3, together with the source model (consisting of the
function nodesp; andpsz 3).

e.g. in [2], [9] it can be shown that the conditional probipil variable nodes directly connected to any function node, and
can be derived via the marginalization similarly, themaximum degree of variable nodés.
, 1 , If we assume that the complexity of elementary opera-
pli=ilyMy®)..  yM))=— Zp(is,y(l),y(%)---7y(M”))7 tions (additions, multiplications, look-ups, etc.) is anstant
T iseTsri= @) complexity O(1), then the complexitg of calculating a single
} message at any function node is®S“+) and the complexity
yvhgrev = 1/p(y'™,y®),...,y{*) can be seen as normal-of calculating a single message ‘tat a)ny variable node is of
ization constant and O(d,S), similar as e.g. derived in [2], [9]. Considering the
plis,y M,y @) .., yM)) = p(is) - p(y™, y?) ..., yMlis).  case where the factor-graph is cycle-free, an adaptecovensi
(3) the efficient forward-backward algorithm [7] can be emplbye
(Considering the case of CME, the decoding operation rand it can be shown that the complexity of calculating all
duces, similar as before, to the problem of calculating thaessages at the function nodes is@fNd;S%), that the
conditional probabilities according to (2), which is nosdi complexity of calculating all messages at the variable sode
cussed separately here.) is of O(N,d2S) and that the overall complexity is given by
It is worth pointing out that it might be possible (dependintjieir sum. For the case where the factor-graph has cycles,
on the source and decoding models) to express the factdfsiterative approach is required, and the complexities/eler
in (3) themselves by a product which can be exploited fé® be of O(T'N;d;S% ) and O(T'N,d2S) for the function
an efficient implementation of the marginalization in (2§, aand variable nodes, respectively, whére> 1 denotes the

outlined in the next section. maximum number of iterations performed.
) We observe the following: (a) Source and packet models
B. Factor-Graphs and the Sum-Product Algorithm that can be represented by trees lead to a maximum number

It is easy to see that the decoding model derived befasefunction nodesV; that is of O(N), (b) d; depends on the
describes a (valid) factorization of the factors in (3) atsl iconnectivity of the nodes within the packet models (i.e. the
graphical representation is often calledfactor-graph see number of packets that are jointly encoded) and the pragserti
e.g. [7]. Employing thesum-product algorithmalso see [7], of the given (chosen) the source model, (¢) depends on
which runs on the factor-graph, the (global) marginal@ati the number of network nodes, and their degree, and (d)

in (2) can be performed via (local) marginalizations andrgiv d,, depends on the topology of the given (chosen) source
rise to an efficient calculation. In particular this is acttié model. We conclude that the decoding complexity, which is
by running an appropriatmessage passingigorithn? along clearly governed by the function nodes, is strongly affécte
the factor-graph and, depending on whether the messagethe topology of the packet and source model (exponential
passing procedure terminates or not (i.e. if the factoplgradependency on node degree) arut by the number of nodes

is cycle-free or not), the exact or an approximated value @nly linear dependency ofV). This in turn means that the
p(is =ily®,y®,...,yM) is obtained simultaneously for decoding model used for the decoder implementation (which
allieZ; and alls € S;. might be simplified, or not) should aim for a large number
of function nodes with a small degree rather than a small
_ _ ) _number with a large degree, i.e. we always should exploit the
For the following discussion of the sum-product algoritm’s¢yctural properties of the (full) decoding model to obtai
decoding complexity, we consider (for the sake of simplicit yecoder with low complexity.

the case wheré, = S = N for all t € 7. We setN = |N]|

and define the following parameters concerning the graphica V1. PROOFOF-CONCEPT

decoding model (not simplified): Thmaximum alphabet size
S = maxpen {max{|Z,|, | x|, |Yn|}} the number of func-
tion nodesVy, thenumber of variable node¥,, themaximum
degree of function nodeg;, i.e. the maximum number of

C. Complexity Considerations

Considering the counter example with three sources and two
sinks presented in [10], we focus on the system setup depicte
in Figure 1. To provide some first results, we consider the cas
of block lengthB = 1, i.e. where each each source symbol
8For factor-graphs without cycles the efficigitward-backwardalgorithm is encoded and transmitted separately. In our source model
can be employed, see [7]. the (discrete-valued) source symbals are the quantized



versions of a continuous-valued source sam@gs s

TABLE |

1,2, 3, where the vectofU,, Us, Us) is distributed according

to a multivariate Gaussian distribution. To emulate thenade

in [10], wherel, and/s are correlated anf is independent of
them, the joint distribution ofUy, Us, Us) is chosen such that

p(u1,us,usz) factors intop(uy )- (u2, uz) wherel; ~ N (1,0)
and (Us,Us) ~ N(Z,p) with ¥ [,%], 1w = (0,07

and correlation coefficienp. We are able to express this

correlation model of the sources, I and I3 in terms of
(conditional) entropies such th&f(l;) = H(Ix) = H(I3) =

h, H(IQ|I3) = H(I3|12) =€ andH(IQ,[3) = h + € whereh
(under afore mentioned assumptions) depends of the chose
guantizer and (additionally) on the correlation coefficiept

After introducing the constant®;,, R., R+, and using the

results in [12], it can be easily verified that the rafess =

Riy=Ros=R37=Rs6=Rp>h, Rs3g=Rc.>eandR, 5=
Rs.7= Ryt >h+ € are admissible. Following this results, we

chooseR;, =[h], Re=[¢]+ ¢ andRy4.=[h+¢] + ¢, where
0 corresponds to some additional rate we might be willing to

utilize to improve the decoding results.

Considering the system setup in Figure 1, we choose the
encoding functions at node, v, andvs as bijective mappings
in case the output rate iR, and as a surjective mapping in

case the output rate iB.. For nodev, the coding function
from the two inputs to the output corresponds to a mapping

representing the modul®®» addition of the input symbols

which is then modified to obtain a output raf, . ..° Node
vs simply corresponds to a bijective mapping from the input
to each output. [1]
For our numerical results, we choose a 8 level Lloyd{2]
Max quantizer leading td» = 2.83 [bit] and choosee =
0-h,%-h,2-h h corresponding top = 1,0.988,0.881,0
(derived by experiment). We useth® samples for each
source and each simulation. We quantify the performance of
decodert decoding Ehe discrete-valued sourketo form the 4]
reconstruction valué; ; in terms of the error probability’ ;
and, similarly, we consider the output signal-to-noiseorat 5
SNR;; = —10log,q E{(Us — Us;)?} in [dB] to evaluate
the performance in the case of continuous-valued sources,
5=1,2,3,t=6,7. [6]
Numerical results for the presented setup and severalvalug)
of 6 are summarized in Table I. In Case (a) wh&keandUs
are fully correlated (i.eus = u3) and Case (d) wher&, and
Us; are statistically independent, we obtain optimal resuith w
a error probabilityP; ; = 0 and an output SNR, = 14.6 [dB]
(distortion of Lloyd-Max quantization alone). The optirityl

(3]

—

(8]

9]

e [bit] (p) 0 (1) 1h =0.942 (0.988)
5 [bit] 0 0 0.585 1
Ry, [bit] 3 3 3 3
R [bit] 0 1 1.59 2
Ry, .. [bit] 3 4 4.59 5
P16=Ps [bit] 0 0 0 0
P36 [bit] 0 82.6e-3| 43e-6 18e-6
P 7=Pa7 (DI 0 65.8e-3| 43e-6 11e-6
P37 [bit] 0 0 0 0
SNRy ¢ [dB] 14.6 14.6 14.6 14.6
SNRy,6 [dB] 14.6 14.6 14.6 14.6
SNR;,6 [dB] 14.6 12.6 14.6 14.6
SNR;,7 [dB] 14.6 8.29 14.6 14.6
NSNR;,7 [dB] 14.6 12.8 14.6 14.6
SNR; 7 [dB] 14.6 14.6 14.6 14.6
Case (@) (b) (bI) (b2)
e [bit] (p) 2h = 1.88 (0.881) h = 2.83 (0)
5 [bit] 0 0.322 | 0.585 0
Ry, [bit] 3 3 3 3
Re [bit] 2 2.32 2.59 3
Ry [bit] 5 5.32 5.59 6
Pio=Pag [DiY] 0 0 0 0
P3¢ [bit] 28.2e-3| 5.20e-3| 430e-6 0
Pi7=P,7 [bit] | 23.7e-3| 4.50e-3| 468e-6 0
Ps 7 [bit] 0 0 0 0
SNR; 6 [dB] 14.6 14.6 14.6 14.6
SNRy¢ [dB] 14.6 14.6 14.6 14.6
SNR;.6 [dB] 9.40 12.3 14.2 14.6
SNRy7 [dB] 9.17 13.0 145 14.6
SNRy,7 [dB] 9.87 12.5 14.2 14.6
SNR;.7 [dB] 14.6 14.6 14.6 14.6
Case (c) (c1) (c2) (d)
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